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LETTER TO THE EDITOR 

A new method of calculating order-disorder transition 
temperatures and correlations in tight-binding alloys 

T A  Grishchenko, I V Masanskii and V I Tokar 
Institute of Metal Physics, Academy of Sciences of the Ukrainian SSR, Vernadsky str. 36, 
252680, Kiev-142, USSR 

Received 28 February 1990 

Abstract. We develop a simple method to calculate short-range order and temperatures of 
order-disorder transitions in binary alloys using a series expansion in powers of a parameter 
y = exp(-l/E), where E is the dimensionless correlation length of the one-electron Green 
function. In the zeroth order our approach gives the theory of Ducastelle and Treglia 
(coherent-potential and Bragg-Williams approximations). In the lowest non-trivial order 
we obtain the spherical model results for transition temperatures and correlations in the 
disorder phase, with the effective nearest neighbour interaction potential identical to that 
of the generalised perturbation method. It turns out that in this order the corrections to the 
zeroth-order electronic Green function can be neglected, so we have the calculation scheme 
based on the well-known coherent-potential approximation. 

Calculation of order-disorder transition temperatures and phase diagrams of binary 
alloys is a long-standing problem (for a review, see de Fontaine 1979). Usually the 
thermodynamic potential as a function of order parameters is computed. The con- 
figurational entropy is calculated within the cluster variation method (CVM) (Kikuchi 
1951) while the internal energy is obtained both phenomenologically and by taking into 
account the electronic structure. The first approach is based on the Ising model, with 
the interatomic potentials regarded as input parameters (de Fontaine 1979). There exist 
several microscopic approaches, such as the Connolly and Williams (1983) technique, 
the generalised perturbation method (GPM) (Bieber etal1981), the cluster-Bethe-lattice 
method (CBLM) (Robbins and Falicov 1982) and the KKR-CPA embedded-cluster method 
(Gonis et al1984). However, the CBLM relies on severe topological approximation while 
in other methods an extrapolation from specific alloy configurations is used. In principle, 
we have to treat the electronic and atomic degrees of freedom on an equal footing and 
calculate the full partition function. Such a theory was developed by Ducastelle and 
Treglia (1980). Nevertheless, in their approach the short-range order (SRO), which plays 
an important role, is totally neglected. In this letter we propose a new method of 
calculating critical temperature which takes into account the presence of SRO and gives 
the above theory in the zeroth order. 

In our approach the series expansion in powers of a parameter y = exp( - 1/5) is used 
where 5: is a correlation length of the one-electron Green function measured in units of 
distance between nearest neighbour (NN) sites (Tokar 1985). This expansion is based on 
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the exponential decrease of the Green function with increasing distance between lattice 
sites i and j (see, for instance, Baxter 1982, p 26) 

where F(i) is a function varying at a rate less than exponentially. 
We consider a tight-binding model Hamiltonian with diagonal disorder, 

H = t&Ci + ( E i  - p)c:c i  
i j  i 

where ci is the annihilation operator of an electron at the site i, tu are the non-random 
transfer integrals, ci the random atomic levels taking the values where a = A, B and 
p is the electronic chemical potential. 

The corresponding partition function is (Vasil'ev 1976, p 16) 

Z[a, a + , A ]  = C I  DWDW+Dq exp[S(v, q')  + F ( q )  + v ' a  + a + v  + qA] (2) 

where the action has the form 

S ( v ,  v + )  = v + ( - a / a t  - 0 4  (3) 
and 

exp F ( q )  = [d(q + d - E * )  + d(q + - E ~ ) ]  exp(pvq). 
v ,  I)+ and q (a, a+, and A )  are fermion and boson (source) fields, the fermion ones 
depend on imaginary time, %e is the corresponding one-particle Hamiltonian in the site 
representation, /3 the inverse temperature and v the atomic chemical potential. To 
proceed with the irreducible correlation function we have introduced the average B of 
the boson field and its fluctuation q .  In (2) and (3) reduced notations imply summation 
over site indices and integration over time from zero to p. 

The partition function (2) may be written in the form (Tokar 1985) 

Z[a, a + ,  A ]  = Cexp(-a'ga) exp(UGA)R(ga, a+g, GA) 

= e x P [ ( ~ / ~ v ) g ( ~ / w + ) l  e x P ~ w / w ) G ( ~ / W l  

x exp[-v+(q + 3~ + v+ov - W q  + F(q)] 

(4) 
where 

R(V9 v +  7 

is a generating functional for the S-matrix 

g = ( - a / a t - H - o ) - '  G = - 2-1 

are exact fermion and boson Green functions, respectively, o and X are corresponding 
self-energies. For fermion fields, left derivatives (Vasil'ev 1976, p 11) have been used. 

From (4), similarly to Tokar (1985), we obtain the following equations for and 2: 

d2 In R / d q d v +  l o  = 0 

d2  In R / d q 6 q l o  = 0 

61nR/dqlo = O  

where subscript '0' denotes the condition q j  = v+ = q = 0. 
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Perturbation theory gives the following results: in the zeroth-order approximation we 
have the theory of Ducastelle and Treglia (1980); the coherent-potential approximation 
(CPA) equation 

cat= = 0 t" = ( E =  - ao)/[l - go(&= - ao)] 
0 

(c" is the concentration of a-atoms and t" the scattering operator) and the Bragg- 
Williams one. Hereafter the subscripts '0' and '1' denote the diagonal and NN matrix 
elements, respectively. For the non-diagonal self-energies we obtain Z = 
O(g:), a1 = O(g:). The lowest-order expression for Z1 is 

Zl = pW1/A2 (6) 

(7) 

where 

w1 = ( 1 / 4  I dEf (E)  Im[(At)2g:11E+ 

is the effective NN interaction potential (Bieber et af 1981) arising in the GPM as a result 
of elimination of electronic degrees of freedom,f(E) is the Fermi function, A = 
and At = tA - tB. From (6) and the link ( 5 )  between the boson Green function and 
the self-energy, the following expression for the Warren-Cowley SRO parameter (Y 

(Krivoglaz and Smirnov 1964) which is connected with G by 

- 

G = ~ ( l  - c)(YA~ 
is obtained: 

ajj = P&l(X)Pij(X) 

P d X )  = 4 4 1  - C)BWl 

where x is found from the equation 

and q is the coordination number and 
P j j ( x ) = R - l l m e x p [ - i k ( i - j ) ]  d3k A(k)=q-' xexp( ik j )  

NN 

is the NN interaction Green function. Integration is over the Brillouin zone of the volume 
$2. Note that in our approach the identity am = 1 is automatically satisfied (for a 
discussion of this, see Ducastelle and Treglia 1980). 

When the second-order transition with the wavevector ko takes place, we have at the 
critical point a-'(ko) = 0 and, therefore, the transition temperature T, is determined 
from (8) with x = A(k,). These results correspond formally to the spherical model ones 
(Baxter 1982, p 74). However, the potential W1 is expressed in terms of electronic 
structure parameters and depends on concentration and temperature. 

Our preliminary numerical results are shown in figures 1 and 2. We have considered 
the equiatomic ordering alloy on the simple cubic lattice with a half-filled band and NN 
transfer. The Hamiltonian (1) is usually used for the description of d electrons. There- 
fore, we have taken into account the band (and spin) degeneracy and this leads to a 
factor of 10 entering (7). All energy values are measured in units of half-bandwidth. In 
figure 1, the NN SRO parameters given by 

(Y1 = x  - P&l(X) 

and the potential W1 are plotted versus temperature in the region from T, to 3T,. The 



4772 Letter to the Editor 

T 4 

Figure 1. Temperature dependence of the SRO 
parameter a, (full curve) and effective NN inter- 
action potential W ,  (broken curve) in the region 
from T, to 3Tc for A = 0.8. 

Figure 2. Critical temperature T, as a function of 
the disorder parameter A = - E ~ .  

noticeable temperature dependence of the potential arises from a rapid change of the 
integrand in (7) near the Fermi level. Critical temperature as a function of the disorder 
parameter A is shown in figure 2. This curve has a qualitatively correct form (see, for 
example, Plischke and Mattis 1973). More detailed calculations are now in progress. 

To summarise, we have obtained simple equations for calculating SRO parameters 
and order-disorder transition temperatures in binary tight-binding alloys. Note that in 
the lowest order the corrections to the zeroth-order electronic Green function can be 
neglected, and thereby we obtain a calculation scheme based on the well-known CPA. 
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